
NUMA Aware Garbage Collection

Maria Patrou, Panagiotis Patros, Kenneth B. Kent, Gerhard Dueck
University of New Brunswick, IBM Canada

Faculty of Computer Science

{Maria.Patrou, Patros.Panos, ken, gdueck}@unb.ca

Background
Non Uniform Memory Access (NUMA) is a memory design used in
multiprocessing. In NUMA architectures, nodes are composed of
associated physical processors (CPUs). Each node has its own memory
and connection bus. There are different kinds of NUMA node
connections:

The main benefit of NUMA over traditional UMA is scalability, which is
performed by increasing the number of nodes.

Cache coherence is important in the performance of NUMA. Storing data
in the cache improves the retrieval speed of objects. However, different
processors can locally access and change objects, causing reading and
writing from/to memory. This is done to keep remote copies in sync,
which slows down the program’s performance.

Double NUMA

Quad NUMA Square NUMA

Motivation
Accesses within node memory are faster than inter-node ones. So the
number of remote accesses should be minimized.

Also, there are many cache issues, such as cache misses, that increase
memory and cache interaction. False sharing is also an issue, since we
do not want untouched and updated objects to be in the same cache
lines, causing the unnecessary updates of the whole line.

Lastly, there are problems with Garbage Collection (GC) in NUMA
systems. Grouping threads and objects on nodes can improve some
applications, but this is not general enough to be beneficial for all.

Testing on a Double NUMA node computer with 8/16 cores suggests that
no NUMA-local vs all NUMA-local accesses are slower by 33%.

Hypothesis
We aim to test if different heuristics would improve NUMA performance:

• Minimization of remote accesses

• Workload balance between nodes

• Cache coherence and garbage collection

We will investigate regrouping objects and threads between nodes,
based on volatile objects, cache issues, performing GC per node at
different times etc.

Experimental Evaluation
1. NUMA simulator; to retrieve useful statistics about the state-of-the-art

algorithms.

2. Multithreaded application that will perform random and synchronized
memory accesses across multiple NUMA nodes.

3. Capturing real memory accesses from Java applications and cache
simulator.

4. Combining these, we expect to come up with heuristics or a model
that will improve applications’ performance.

Uniform Memory Access

All memory accesses have 

the same cost

Non Uniform Memory Access

Memory accesses have varying 

cost


